
Conditional Statement
A statement that can be executed based on a condition is known as a “Conditional
Statement”. The statement is often a block of code. C# conditional statements allow
you to branch your code depending on a certain value of an expression or condition.
C# has two constructs for branching code, the if statement and the switch statement.

C# supports the usual logical conditions from mathematics:
Less than: a < b
Less than or equal to: a <= b
Greater than: a > b
Greater than or equal to: a >= b
Equal to a == b
Not Equal to: a!= b

You can use these conditions to perform different actions for different decisions.

C# has the following conditional statements:

1. Use if to specify a block of code to be executed, if a specified condition is true
2. Use if-else to specify a block of code to be executed, if the same condition is false
3. Use if and else if to specify a new condition to test, if the first condition is false
4. Use switch to specify many alternative blocks of code to be executed

1. The if Statement
Use the if statement to specify a block of C# code to be executed if a condition is True
other block will not executed if the condition is false.

Syntax
if (condition)
{
 // block of code to be executed if the condition is True
}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an error.

Example-- In the example below, we test two values to find out if 20 is greater than
18. If the condition is True, print some text:

if (20 > 18)
{
 Console.WriteLine("20 is greater than 18");
}

OUTPUT-
20 is greater than 18

We can also test variables:

int x = 20;
int y = 18;
if (x > y)
{
 Console.WriteLine("x is greater than y");
}

OUTPUT-
20 is greater than 18

Example explained
In the example above we use two variables, x and y, to test whether x is greater than y
(using the > operator). As x is 20, and y is 18, and we know that 20 is greater than 18,
we print to the screen that "x is greater than y".

2. The if-else Statement
Use the if-else statement to specify a block of code to be executed with if and else
conditions. If block will be executed if the condition is True otherwise else block will be
executed in case condition is False.

Syntax

if (condition)

{
 // block of code to be executed if the condition is True
}
else
{
 // block of code to be executed if the condition is False
}

Example-

int time = 20;
if (time < 18)
{
 Console.WriteLine("Good day.");
}
else
{
 Console.WriteLine("Good evening.");
}

Outputs
 Good evening.

Example explained
In the example above, time (20) is greater than 18, so the condition is False. Because
of this, we move on to the else condition and print to the screen "Good evening". If
the time was less than 18, the program would print "Good day".

3. The if with else-if Statement
Use the if with else-if statement to specify multiple conditions and execute one
specific block of code, depends on true condition. First compiler will check whether
the if condition is true or false. So if, if condition is true then if block will execute
otherwise next else if blocks will be tested and execute that block which will true. If no
condition is true then else block will execute. Else block is optional.

Syntax
if (condition1)
{
 // block of code to be executed if condition1 is True
}
else if (condition2)
{
 // block of code to be executed if the condition1 is false and condition2 is True
}
else if (condition3)
{
 // block of code to be executed if the condition1 and condition2 is false and
condition3 is True
}
else
{
 // block of code to be executed if the condition1, condition2 and condition3 is False
}

Example-

int time = 22;
if (time < 12)
{
 Console.WriteLine("Good morning.");
}
else if (time < 16)
{
 Console.WriteLine("Good afternoon.");
}
else if (time < 20)
{
 Console.WriteLine("Good evening.");
}
else
{
 Console.WriteLine("Good night.");
}

Outputs
Good night.

Example explained
In the example above, time (22) is greater than 12, so the first condition is False. The
next condition (time is greater than 16), in the else if statement, is also False, The next
condition (time is greater than 20), in the else if statement, is also False, so we move
on to the else condition since condition1, condition2 and condition3 are False - and
print to the screen "Good night".

However, if the time was 14, our program would print "Good afternoon."

4. Switch construct
The switch statement allows you to handle program flow based on predefined sets of
conditions. It takes a switch argument followed by a series of case clauses. The syntax
of the switch construct is as in the following:

Syntax

switch(argument)
{
 case 1:
 // Do anything
 break;
 case 2:
 // Do anything
 break;
 default:
 // Do anything
 break;
}
When the expression in the switch argument is evaluated, the code immediately
following the case clause executes and it marks the end of statements by the break
clause. If the expression evaluates to none of the other clause then you can include a
default clause.

Note: The order of case doesn't matter; you can put the default case first.

The following example performs some short math operations like addition,
multiplication and so on. You can ask the user at run time in form of choices what
operation he wants to do. Then we read two numeric values from the console and
execute the operation as selected earlier.

Static void Main(string[] args)
 {
 int x,y;
 Console.WriteLine("Enter two Integers");
 x = int.Parse(Console.ReadLine());
 y = int.Parse(Console.ReadLine());
 Console.WriteLine("Operations\n-----------------------------------\n");
 Console.WriteLine("1= Addition\n2= Substraction \n3= Multification");
 Console.Write("Enter the operation code::");
 int op = int.Parse(Console.ReadLine());

 switch (op)
 {
 case 1:
 Console.WriteLine("Add=" + (x + y));
 break;
 case 2:
 Console.WriteLine("Subs=" + (x - y));
 break;
 case 3:
 Console.WriteLine("Multiply=" + (x * y));
 break;
 default:
 Console.WriteLine("wrong choice");
 break;
 }
 Console.ReadKey();
 }

Output
Depends on the user inupt

For practice-

Example 1

int data=10;
if (data !=5)
 {
 Console.WriteLine("value is not equal");
 }

Example 2

For example in the following program we want to determine whether or not a string
is longer than zero characters:
static void Main(string[] args)
{

 string str = "welcome home";

 if (str.Length > 0)
 Console.WriteLine("lenght is > 0");
 else
 Console.WriteLine("lenght is < 0");

 Console.ReadKey();
 }

Example 3

int x=10, y=20,z=22;
if (x >y)
 {
 Console.WriteLine("x is Highest");

 }
else if (x > z)
 {
 Console.WriteLine("x is Highest");
 }
else if (y > z)
 {
 Console.WriteLine("y is Highest");
 }
else
 {
 Console.WriteLine("z is Highest");
 }

Example 4

switch (country)
 {
 case "india":
 goto case "Canada";
 case "USA":
 break;
 case "Canada":
 break;
 }

